[高等数学] 有理函数的积分

news/2025/2/26 8:33:46

一、知识点

两个多项式的商 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x) 称为有理函数,又称有理分式

当分子多项式 P ( x ) P(x) P(x) 的次数小于分母多项式 Q ( x ) Q(x) Q(x) 的次数时,称这有理函数为真分式,否则称为假分式

对于真分式 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x),如果分母可分解为两个多项式的乘积 Q ( x ) = Q 1 ( x ) Q 2 ( x ) Q(x)=Q_1(x)Q_2(x) Q(x)=Q1(x)Q2(x),且 Q 1 ( x ) Q_1(x) Q1(x) Q 2 ( x ) Q_2(x) Q2(x) 没有公因式,那么它可分拆成两个真分式之和 P ( x ) Q ( x ) = P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) \frac{P(x)}{Q(x)}=\frac{P_1(x)}{Q_1(x)}+\frac{P_2(x)}{Q_2(x)} Q(x)P(x)=Q1(x)P1(x)+Q2(x)P2(x), 该步骤称为把真分式化成部分分式之和

如果 Q 1 ( x ) Q_1(x) Q1(x) Q 2 Q_2 Q2 还能再分解成两个没有公因式的多项式的乘积,就可再分拆成更简单的部分分式。

最后,有理函数的分解式中只出现多项式、 P 1 ( x ) ( x − a ) k \frac{P_1(x)}{(x-a)^k} (xa)kP1(x) P 2 ( x ) ( x 2 + p x + q ) l \frac{P_2(x)}{(x^2+px+q)^l} (x2+px+q)lP2(x) 等三类函数(这里 p 2 − 4 q < 0 p^2-4q<0 p24q<0 P 1 ( x ) P_1(x) P1(x) 为小于 k k k 次的多项式, P 2 ( x ) P_2(x) P2(x) 为小于 2 l 2l 2l 次的多项式).针对各部分分别求积分。


二、练习题(求不定积分)

1. ∫ x 3 x + 3 d x = ∫ x 3 + 27 − 27 x + 3 d x = ∫ ( x + 3 ) ( x 2 − 3 x + 9 ) − 27 x + 3 d x = ∫ ( x 2 − 3 x + 9 ) d x − ∫ 27 x + 3 d x = 1 3 x 3 − 3 2 x 2 + 9 x − 27 l n ∣ x + 3 ∣ + C \begin{aligned} 1. \int \frac{x^3}{x+3}dx &=\int \frac{x^3+27-27}{x+3}dx\\ &=\int \frac{(x+3)(x^2-3x+9)-27}{x+3}dx\\ &=\int (x^2-3x+9)dx-\int \frac{27}{x+3}dx\\ &=\frac{1}{3}x^3-\frac{3}{2}x^2+9x-27ln|x+3|+C \end{aligned} 1.x+3x3dx=x+3x3+2727dx=x+3(x+3)(x23x+9)27dx=(x23x+9)dxx+327dx=31x323x2+9x27lnx+3∣+C


2. ∫ 2 x + 3 x 2 + 3 x − 10 d x = ∫ d ( x 2 + 3 x − 10 ) x 2 + 3 x − 10 = l n ∣ x 2 + 3 x − 10 ∣ + C \begin{aligned} 2. \int \frac{2x+3}{x^2+3x-10}dx &=\int \frac{d(x^2+3x-10)}{x^2+3x-10}\\ &=ln|x^2+3x-10|+C \end{aligned} 2.x2+3x102x+3dx=x2+3x10d(x2+3x10)=lnx2+3x10∣+C


3. ∫ x + 1 x 2 − 2 x + 5 d x = ∫ x − 1 + 2 ( x − 1 ) 2 + 4 d x = ∫ x − 1 ( x − 1 ) 2 + 4 d x + ∫ 2 ( x − 1 ) 2 + 4 d x = 1 2 ∫ d [ ( x − 1 ) 2 + 4 ] ( x − 1 ) 2 + 4 + 1 2 ∫ d x ( x − 1 2 ) 2 + 1 = 1 2 l n ( x 2 − 2 x + 5 ) + a r c t a n x − 1 2 + C \begin{aligned} 3. \int \frac{x+1}{x^2-2x+5}dx &=\int \frac{x-1+2}{(x-1)^2+4}dx\\ &=\int \frac{x-1}{(x-1)^2+4}dx+\int \frac{2}{(x-1)^2+4}dx\\ &=\frac{1}{2} \int \frac{d[(x-1)^2+4]}{(x-1)^2+4}+\frac{1}{2}\int \frac{dx}{(\frac{x-1}{2})^2+1}\\ &=\frac{1}{2}ln(x^2-2x+5)+arctan\frac{x-1}{2}+C \end{aligned} 3.x22x+5x+1dx=(x1)2+4x1+2dx=(x1)2+4x1dx+(x1)2+42dx=21(x1)2+4d[(x1)2+4]+21(2x1)2+1dx=21ln(x22x+5)+arctan2x1+C


4. ∫ d x x ( x 2 + 1 ) = ∫ ( 1 x − x x 2 + 1 ) d x = l n ∣ x ∣ − 1 2 ∫ d ( x 2 + 1 ) x 2 + 1 = l n ∣ x ∣ − 1 2 l n ( x 2 + 1 ) + C \begin{aligned} 4. \int \frac{dx}{x(x^2+1)} &=\int (\frac{1}{x}-\frac{x}{x^2+1})dx\\ &=ln|x|-\frac{1}{2}\int \frac{d(x^2+1)}{x^2+1}\\ &=ln|x|-\frac{1}{2}ln(x^2+1)+C \end{aligned} 4.x(x2+1)dx=(x1x2+1x)dx=lnx21x2+1d(x2+1)=lnx21ln(x2+1)+C


5. ∫ 3 x 3 + 1 d x = ∫ ( 1 x + 1 − x − 2 x 2 − x + 1 ) d x = ∫ 1 x + 1 d x − x − 2 x 2 − x + 1 d x = l n ∣ x + 1 ∣ − ∫ x − 1 2 x 2 − x + 1 d x + 3 2 ∫ d x x 2 − x + 1 = l n ∣ x + 1 ∣ − 1 2 ∫ 2 x − 1 x 2 − x + 1 d x + 3 2 ∫ d x ( x − 1 2 ) 2 + 3 4 = l n ∣ x + 1 ∣ − 1 2 ∫ d ( x 2 − x + 1 ) x 2 − x + 1 + 3 2 ∫ d x 3 4 [ ( 2 x 3 − 1 3 ) 2 + 1 ] = l n ∣ x + 1 ∣ − 1 2 l n ( x 2 − x + 1 ) + 3 ∫ d ( 2 x 3 − 1 3 ) ( 2 x 3 − 1 3 ) 2 + 1 = l n ∣ x + 1 ∣ − 1 2 l n ( x 2 − x + 1 ) + 3 a r c t a n ( 2 3 x 3 − 3 3 ) + C \begin{aligned} 5. \int \frac{3}{x^3+1}dx &=\int (\frac{1}{x+1}-\frac{x-2}{x^2-x+1})dx\\ &=\int \frac{1}{x+1}dx-\frac{x-2}{x^2-x+1}dx\\ &=ln|x+1|-\int \frac{x-\frac{1}{2}}{x^2-x+1}dx+\frac{3}{2}\int \frac{dx}{x^2-x+1}\\ &=ln|x+1|-\frac{1}{2}\int \frac{2x-1}{x^2-x+1}dx+\frac{3}{2}\int\frac{dx}{(x-\frac{1}{2})^2+\frac{3}{4}}\\ &=ln|x+1|-\frac{1}{2}\int \frac{d(x^2-x+1)}{x^2-x+1}+\frac{3}{2}\int \frac{dx}{\frac{3}{4}[(\frac{2x}{\sqrt{3}}-\frac{1}{\sqrt{3}})^2+1]}\\ &=ln|x+1|-\frac{1}{2}ln(x^2-x+1)+\sqrt{3}\int \frac{d(\frac{2x}{\sqrt{3}}-\frac{1}{\sqrt{3}})}{(\frac{2x}{\sqrt{3}}-\frac{1}{\sqrt{3}})^2+1}\\ &=ln|x+1|-\frac{1}{2}ln(x^2-x+1)+\sqrt{3}arctan(\frac{2\sqrt{3}x}{3}-\frac{\sqrt{3}}{3})+C \end{aligned} 5.x3+13dx=(x+11x2x+1x2)dx=x+11dxx2x+1x2dx=lnx+1∣x2x+1x21dx+23x2x+1dx=lnx+1∣21x2x+12x1dx+23(x21)2+43dx=lnx+1∣21x2x+1d(x2x+1)+2343[(3 2x3 1)2+1]dx=lnx+1∣21ln(x2x+1)+3 (3 2x3 1)2+1d(3 2x3 1)=lnx+1∣21ln(x2x+1)+3 arctan(323 x33 )+C


6. ∫ x 2 + 1 ( x + 1 ) 2 ( x − 1 ) d x \begin{aligned} 6. \int \frac{x^2+1}{(x+1)^2(x-1)}dx\\ \end{aligned} 6.(x+1)2(x1)x2+1dx

x 2 + 1 ( x + 1 ) 2 ( x − 1 ) = A x + B ( x + 1 ) 2 + C x − 1 \frac{x^2+1}{(x+1)^2(x-1)}=\frac{Ax+B}{(x+1)^2}+\frac{C}{x-1} (x+1)2(x1)x2+1=(x+1)2Ax+B+x1C,得 A = 1 2 A=\frac{1}{2} A=21 B = − 1 2 B=-\frac{1}{2} B=21 C = 1 2 C=\frac{1}{2} C=21,则

∫ x 3 + 1 ( x + 1 ) 2 ( x − 1 ) d x = ∫ [ x − 1 2 ( x + 1 ) 2 + 1 2 ( x − 1 ) ] d x = 1 2 ∫ [ x + 1 ( x + 1 ) 2 − 2 ( x + 1 ) 2 + 1 x − 1 ] d x = 1 2 ( l n ∣ x + 1 ∣ + 2 x + 1 + l n ∣ x − 1 ∣ ) + C = 1 x + 1 + 1 2 l n ∣ x 2 − 1 ∣ + C \begin{aligned} \int \frac{x^3+1}{(x+1)^2(x-1)}dx &=\int [\frac{x-1}{2(x+1)^2}+\frac{1}{2(x-1)}]dx\\ &=\frac{1}{2}\int [\frac{x+1}{(x+1)^2}-\frac{2}{(x+1)^2}+\frac{1}{x-1}]dx\\ &=\frac{1}{2}(ln|x+1|+\frac{2}{x+1}+ln|x-1|)+C\\ &=\frac{1}{x+1}+\frac{1}{2}ln|x^2-1|+C \end{aligned} (x+1)2(x1)x3+1dx=[2(x+1)2x1+2(x1)1]dx=21[(x+1)2x+1(x+1)22+x11]dx=21(lnx+1∣+x+12+lnx1∣)+C=x+11+21lnx21∣+C


7. ∫ x d x ( x + 1 ) ( x + 2 ) ( x + 3 ) \begin{aligned} 7. &\int \frac{xdx}{(x+1)(x+2)(x+3)}\\ \end{aligned} 7.(x+1)(x+2)(x+3)xdx

x ( x + 1 ) ( x + 2 ) ( x + 3 ) = A x + 1 + B x + 2 + C x + 3 \frac{x}{(x+1)(x+2)(x+3)}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3} (x+1)(x+2)(x+3)x=x+1A+x+2B+x+3C,得 A = − 1 2 A=-\frac{1}{2} A=21 B = 2 B=2 B=2 C = − 3 2 C=-\frac{3}{2} C=23,则

∫ x d x ( x + 1 ) ( x + 2 ) ( x + 3 ) = ∫ [ − 1 2 ( x + 1 ) + 2 x + 2 − 3 2 ( x + 3 ) ] d x = − 1 2 l n ∣ x + 1 ∣ + 2 l n ∣ x + 2 ∣ − 3 2 l n ∣ x + 3 ∣ + C = 1 2 l n ( x + 2 ) 4 ∣ ( x + 1 ) ( x + 3 ) 3 ∣ + C \begin{aligned} \int \frac{xdx}{(x+1)(x+2)(x+3)} &=\int [-\frac{1}{2(x+1)}+\frac{2}{x+2}-\frac{3}{2(x+3)}]dx\\ &=-\frac{1}{2}ln|x+1|+2ln|x+2|-\frac{3}{2}ln|x+3|+C &=\frac{1}{2}ln\frac{(x+2)^4}{|(x+1)(x+3)^3|}+C \end{aligned} (x+1)(x+2)(x+3)xdx=[2(x+1)1+x+222(x+3)3]dx=21lnx+1∣+2lnx+2∣23lnx+3∣+C=21ln(x+1)(x+3)3(x+2)4+C


8. ∫ x 5 + x 4 − 8 x 3 − x d x = ∫ ( x 5 + x 4 x 3 − x − 8 x 3 − x ) d x = ∫ x 4 ( x + 1 ) x ( x + 1 ) ( x − 1 ) d x − ∫ 8 x ( x + 1 ) ( x − 1 ) d x = ∫ x 3 x − 1 d x − ∫ ( 4 x + 1 − 8 x + 4 x − 1 ) d x = ∫ x 3 − 1 + 1 x − 1 d x − 4 l n ∣ x + 1 ∣ + 8 l n ∣ x ∣ − 4 l n ∣ x − 1 ∣ = ∫ ( x 2 + x + 1 + 1 x − 1 ) d x − 4 l n ∣ x + 1 ∣ + 8 l n ∣ x ∣ − 4 l n ∣ x − 1 ∣ = x 3 3 + x 2 2 + x + l n ∣ x − 1 ∣ − 4 l n ∣ x + 1 ∣ + 8 l n ∣ x ∣ − 4 l n ∣ x − 1 ∣ + C = x 3 3 + x 2 2 + x − 3 l n ∣ x − 1 ∣ − 4 l n ∣ x + 1 ∣ + 8 l n ∣ x ∣ + C \begin{aligned} 8. \int \frac{x^5+x^4-8}{x^3-x}dx &=\int (\frac{x^5+x^4}{x^3-x}-\frac{8}{x^3-x})dx\\ &=\int \frac{x^4(x+1)}{x(x+1)(x-1)}dx-\int \frac{8}{x(x+1)(x-1)}dx\\ &=\int \frac{x^3}{x-1}dx-\int (\frac{4}{x+1}-\frac{8}{x}+\frac{4}{x-1})dx\\ &=\int \frac{x^3-1+1}{x-1}dx-4ln|x+1|+8ln|x|-4ln|x-1|\\ &=\int (x^2+x+1+\frac{1}{x-1})dx-4ln|x+1|+8ln|x|-4ln|x-1|\\ &=\frac{x^3}{3}+\frac{x^2}{2}+x+ln|x-1|-4ln|x+1|+8ln|x|-4ln|x-1|+C\\ &=\frac{x^3}{3}+\frac{x^2}{2}+x-3ln|x-1|-4ln|x+1|+8ln|x|+C \end{aligned} 8.x3xx5+x48dx=(x3xx5+x4x3x8)dx=x(x+1)(x1)x4(x+1)dxx(x+1)(x1)8dx=x1x3dx(x+14x8+x14)dx=x1x31+1dx4lnx+1∣+8lnx4lnx1∣=(x2+x+1+x11)dx4lnx+1∣+8lnx4lnx1∣=3x3+2x2+x+lnx1∣4lnx+1∣+8lnx4lnx1∣+C=3x3+2x2+x3lnx1∣4lnx+1∣+8lnx+C


9. ∫ d x ( x 2 + 1 ) ( x 2 + x ) = ∫ [ 1 x − x + 1 2 ( x 2 + 1 ) − 1 2 ( x + 1 ) ] d x = l n ∣ x ∣ − 1 2 l n ∣ x + 1 ∣ − 1 4 ∫ ( 2 x x 2 + 1 + 2 x 2 + 1 ) d x = l n ∣ x ∣ − 1 2 l n ∣ x + 1 ∣ − 1 4 l n ( x 2 + 1 ) − 1 2 a r c t a n x + C \begin{aligned} 9. \int \frac{dx}{(x^2+1)(x^2+x)} &=\int [\frac{1}{x}-\frac{x+1}{2(x^2+1)}-\frac{1}{2(x+1)}]dx\\ &=ln|x|-\frac{1}{2} ln|x+1|-\frac{1}{4}\int (\frac{2x}{x^2+1}+\frac{2}{x^2+1})dx\\ &=ln|x|-\frac{1}{2}ln|x+1|-\frac{1}{4}ln(x^2+1)-\frac{1}{2}arctanx+C \end{aligned} 9.(x2+1)(x2+x)dx=[x12(x2+1)x+12(x+1)1]dx=lnx21lnx+1∣41(x2+12x+x2+12)dx=lnx21lnx+1∣41ln(x2+1)21arctanx+C


10. ∫ 1 x 4 − 1 d x = ∫ [ 1 4 ( x − 1 ) − 1 2 ( x 2 + 1 ) − 1 4 ( x + 1 ) ] d x = 1 4 l n ∣ x − 1 ∣ − 1 2 a r c t a n x − 1 4 l n ∣ x + 1 ∣ + C \begin{aligned} 10. \int \frac{1}{x^4-1}dx &=\int [\frac{1}{4(x-1)}-\frac{1}{2(x^2+1)}-\frac{1}{4(x+1)}]dx\\ &=\frac{1}{4}ln|x-1|-\frac{1}{2}arctanx-\frac{1}{4}ln|x+1|+C \end{aligned} 10.x411dx=[4(x1)12(x2+1)14(x+1)1]dx=41lnx1∣21arctanx41lnx+1∣+C


11. ∫ d x ( x 2 + 1 ) ( x 2 + x + 1 ) = − 1 2 l n ( x 2 + 1 ) + 1 2 ∫ d ( x 2 + x + 1 ) x 2 + x + 1 + 1 2 ∫ d x ( x + 1 2 ) 2 + ( 3 2 ) 2 = 1 2 l n ( x 2 + x + 1 ) − 1 2 l n ( x 2 + 1 ) + 3 3 a r c t a n 2 x + 1 3 + C \begin{aligned} 11. \int \frac{dx}{(x^2+1)(x^2+x+1)} &=-\frac{1}{2}ln(x^2+1)+\frac{1}{2}\int \frac{d(x^2+x+1)}{x^2+x+1}+\frac{1}{2}\int \frac{dx}{(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}\\ &=\frac{1}{2}ln(x^2+x+1)-\frac{1}{2}ln(x^2+1)+\frac{\sqrt{3}}{3}arctan\frac{2x+1}{\sqrt{3}}+C \end{aligned} 11.(x2+1)(x2+x+1)dx=21ln(x2+1)+21x2+x+1d(x2+x+1)+21(x+21)2+(23 )2dx=21ln(x2+x+1)21ln(x2+1)+33 arctan3 2x+1+C


12. ∫ ( x + 1 ) 2 ( x 2 + 1 ) 2 d x = ∫ x 2 + 1 + 2 x ( x 2 + 1 ) 2 d x = ∫ 2 x ( x 2 + 1 ) 2 d x + ∫ 1 x 2 + 1 d x = − 1 1 + x 2 + a r c t a n x + C \begin{aligned} 12. \int \frac{(x+1)^2}{(x^2+1)^2}dx &=\int \frac{x^2+1+2x}{(x^2+1)^2}dx\\ &=\int \frac{2x}{(x^2+1)^2}dx+\int \frac{1}{x^2+1}dx\\ &=-\frac{1}{1+x^2}+arctanx+C \end{aligned} 12.(x2+1)2(x+1)2dx=(x2+1)2x2+1+2xdx=(x2+1)22xdx+x2+11dx=1+x21+arctanx+C


13. ∫ − x 2 − 2 ( x 2 + x + 1 ) 2 d x = − ∫ x 2 + 2 ( x 2 + x + 1 ) 2 d x = − ∫ x 2 + x + 1 − x + 1 ( x 2 + x + 1 ) 2 d x = − ∫ d x x 2 + x + 1 + ∫ x − 1 ( x 2 + x + 1 ) 2 d x ( 1 ) \begin{aligned} 13. \int \frac{-x^2-2}{(x^2+x+1)^2}dx &=-\int \frac{x^2+2}{(x^2+x+1)^2}dx\\ &=-\int \frac{x^2+x+1-x+1}{(x^2+x+1)^2}dx\\ &=-\int \frac{dx}{x^2+x+1}+\int \frac{x-1}{(x^2+x+1)^2}dx\quad (1) \end{aligned} 13.(x2+x+1)2x22dx=(x2+x+1)2x2+2dx=(x2+x+1)2x2+x+1x+1dx=x2+x+1dx+(x2+x+1)2x1dx(1)

以下分别计算 ( 1 ) (1) (1) 式中的两个不定积分:

( 1 − 1 ) : ∫ d x x 2 + x + 1 = ∫ d x ( x + 1 2 ) 2 + 3 4 = 4 3 ∫ d x ( 2 x 3 + 1 3 ) 2 + 1 = 2 3 3 ∫ d ( 2 x 3 + 1 3 ) ( 2 x 3 + 1 3 ) 2 + 1 = 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C 1 \begin{aligned} (1-1): \int \frac{dx}{x^2+x+1} &=\int \frac{dx}{(x+\frac{1}{2})^2+\frac{3}{4}}\\ &=\frac{4}{3}\int \frac{dx}{(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})^2+1}\\ &=\frac{2\sqrt{3}}{3}\int \frac{d(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})}{(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})^2+1}\\ &=\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C_1 \end{aligned} (11):x2+x+1dx=(x+21)2+43dx=34(3 2x+3 1)2+1dx=323 (3 2x+3 1)2+1d(3 2x+3 1)=323 arctan(3 2x+3 1)+C1

( 1 − 2 ) : ∫ x − 1 ( x 2 + x + 1 ) 2 = 1 2 ∫ 2 x + 1 − 3 ( x 2 + x + 1 ) 2 d x = 1 2 ∫ 2 x + 1 ( x 2 + x + 1 ) 2 d x − 3 2 ∫ d x ( x 2 + x + 1 ) 2 \begin{aligned} (1-2): \int \frac{x-1}{(x^2+x+1)^2} &=\frac{1}{2}\int \frac{2x+1-3}{(x^2+x+1)^2}dx\\ &=\frac{1}{2}\int \frac{2x+1}{(x^2+x+1)^2}dx-\frac{3}{2} \int \frac{dx}{(x^2+x+1)^2}\\ \end{aligned} (12):(x2+x+1)2x1=21(x2+x+1)22x+13dx=21(x2+x+1)22x+1dx23(x2+x+1)2dx

以下分别计算 ( 1 − 2 ) (1-2) (12) 中的两个不定积分:

( 1 − 2 − 1 ) : 1 2 ∫ 2 x + 1 ( x 2 + x + 1 ) 2 d x = 1 2 ∫ d ( x 2 + x + 1 ) ( x 2 + x + 1 ) 2 = − 1 2 ( x 2 + x + 1 ) + C 2 \begin{aligned} (1-2-1): \frac{1}{2}\int \frac{2x+1}{(x^2+x+1)^2}dx &=\frac{1}{2}\int \frac{d(x^2+x+1)}{(x^2+x+1)^2}\\ &=-\frac{1}{2(x^2+x+1)}+C_2 \end{aligned} (121):21(x2+x+1)22x+1dx=21(x2+x+1)2d(x2+x+1)=2(x2+x+1)1+C2

( 1 − 2 − 2 ) : 3 2 ∫ d x ( x 2 + x + 1 ) 2 = 3 2 ∫ d x [ ( x + 1 2 ) 2 + 3 4 ] 2 = 4 3 3 ∫ d ( 2 x 3 + 1 3 ) [ ( 2 x 3 + 1 3 ) 2 + 1 ] 2 \begin{aligned} (1-2-2): \frac{3}{2}\int \frac{dx}{(x^2+x+1)^2}&=\frac{3}{2}\int \frac{dx}{[(x+\frac{1}{2})^2+\frac{3}{4}]^2}\\ &=\frac{4\sqrt{3}}{3}\int \frac{d(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})}{[(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})^2+1]^2}\\ \end{aligned} (122):23(x2+x+1)2dx=23[(x+21)2+43]2dx=343 [(3 2x+3 1)2+1]2d(3 2x+3 1)

t a n t = 2 x 3 + 1 3 tant=\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}} tant=3 2x+3 1, 则:

( 1 − 2 − 2 ) = 4 3 3 ∫ d ( t a n t ) ( t a n 2 t + 1 ) 2 = 4 3 3 ∫ s e c 2 t d t s e c 4 t = 4 3 3 ∫ d t s e c 2 t = 4 3 3 ∫ c o s 2 t d t = 4 3 3 ∫ c o s 2 t + 1 2 d t = 3 3 ∫ c o s 2 t d 2 t + 2 3 3 t = 3 3 s i n 2 t + 2 3 3 t + C 3 = 2 3 t a n t 3 ( 1 + t a n 2 t ) + 2 3 3 t + C 3 = 2 3 ( 2 x 3 + 1 3 ) 3 [ 1 + ( 2 x 3 + 1 3 ) 2 ] + 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C 3 = 2 x + 1 2 ( x 2 + x + 1 ) + 2 3 3 a r c t a n x ( 2 x 3 + 1 3 ) + C 3 \begin{aligned} (1-2-2)&=\frac{4\sqrt{3}}{3}\int \frac{d(tant)}{(tan^2t+1)^2}\\ &=\frac{4\sqrt{3}}{3}\int \frac{sec^2tdt}{sec^4t}\\ &=\frac{4\sqrt{3}}{3}\int \frac{dt}{sec^2t}\\ &=\frac{4\sqrt{3}}{3}\int cos^2tdt\\ &=\frac{4\sqrt{3}}{3}\int \frac{cos2t+1}{2}dt\\ &=\frac{\sqrt{3}}{3}\int cos2t d2t+\frac{2\sqrt{3}}{3}t\\ &=\frac{\sqrt{3}}{3}sin2t+\frac{2\sqrt{3}}{3}t+C_3\\ &=\frac{2\sqrt{3}tant}{3(1+tan^2t)}+\frac{2\sqrt{3}}{3}t+C_3\\ &=\frac{2\sqrt{3}(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})}{3[1+(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})^2]}+\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C_3\\ &=\frac{2x+1}{2(x^2+x+1)}+\frac{2\sqrt{3}}{3}arctanx(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C_3 \end{aligned} (122)=343 (tan2t+1)2d(tant)=343 sec4tsec2tdt=343 sec2tdt=343 cos2tdt=343 2cos2t+1dt=33 cos2td2t+323 t=33 sin2t+323 t+C3=3(1+tan2t)23 tant+323 t+C3=3[1+(3 2x+3 1)2]23 (3 2x+3 1)+323 arctan(3 2x+3 1)+C3=2(x2+x+1)2x+1+323 arctanx(3 2x+3 1)+C3

∴ ( 1 − 2 ) = ( 1 − 2 − 1 ) − ( 1 − 2 − 2 ) = − x + 1 x 2 + x + 1 − 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C 2 + C 3 \begin{aligned} \therefore (1-2)&=(1-2-1)-(1-2-2)\\ &=-\frac{x+1}{x^2+x+1}-\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C_2+C_3\\ \end{aligned} (12)=(121)(122)=x2+x+1x+1323 arctan(3 2x+3 1)+C2+C3

∴ ( 1 ) = − ( 1 − 1 ) + ( 1 − 2 ) = − 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) − x + 1 x 2 + x + 1 − 2 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C = − x + 1 x 2 + x + 1 − 4 3 3 a r c t a n ( 2 x 3 + 1 3 ) + C \begin{aligned} \therefore (1)&=-(1-1)+(1-2)\\ &=-\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})-\frac{x+1}{x^2+x+1}-\frac{2\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C\\ &=-\frac{x+1}{x^2+x+1}-\frac{4\sqrt{3}}{3}arctan(\frac{2x}{\sqrt{3}}+\frac{1}{\sqrt{3}})+C \end{aligned} (1)=(11)+(12)=323 arctan(3 2x+3 1)x2+x+1x+1323 arctan(3 2x+3 1)+C=x2+x+1x+1343 arctan(3 2x+3 1)+C

链接:本题用到的三角函数


14. ∫ d x 3 + s i n 2 = ∫ d x 4 − c o s 2 x = ∫ d x c o s 2 x ( 4 c o s 2 x − 1 ) = ∫ s e c 2 d x 4 s e c 2 x − 1 = ∫ d ( t a n x ) 4 t a n 2 + 3 = 3 6 ∫ d ( 2 3 t a n x ) ( 2 3 t a n x ) 2 + 1 = 3 6 a r c t a n ( 2 3 t a n x ) + C \begin{aligned} 14. \int \frac{dx}{3+sin^2}&=\int \frac{dx}{4-cos^2x}\\ &=\int \frac{dx}{cos^2x(\frac{4}{cos^2x}-1)}\\ &=\int \frac{sec^2dx}{4sec^2x-1}\\ &=\int \frac{d(tanx)}{4tan^2+3}\\ &=\frac{\sqrt{3}}{6}\int \frac{d(\frac{2}{\sqrt{3}}tanx)}{(\frac{2}{\sqrt{3}}tanx)^2+1}\\ &=\frac{\sqrt{3}}{6}arctan(\frac{2}{\sqrt{3}}tanx)+C \end{aligned} 14.3+sin2dx=4cos2xdx=cos2x(cos2x41)dx=4sec2x1sec2dx=4tan2+3d(tanx)=63 (3 2tanx)2+1d(3 2tanx)=63 arctan(3 2tanx)+C


15. ∫ d x 3 + c o s x = ∫ d x 2 + 2 c o s 2 x 2 = ∫ d ( x 2 ) 1 + c o s 2 x 2 = ∫ s e c 2 x 2 d ( x 2 ) s e c 2 x 2 + 1 = ∫ d ( t a n x 2 ) t a n 2 x 2 + 2 = 1 2 ∫ d ( t a n x 2 ) ( 1 2 t a n x 2 ) 2 + 1 = 1 2 ∫ d ( 1 2 t a n x 2 ) ( 1 2 t a n x 2 ) 2 + 1 = 2 2 a r c t a n ( 2 2 t a n x 2 ) + C \begin{aligned} 15. \int \frac{dx}{3+cosx}&=\int \frac{dx}{2+2cos^2\frac{x}{2}}\\ &=\int \frac{d(\frac{x}{2})}{1+cos^2\frac{x}{2}}\\ &=\int \frac{sec^2\frac{x}{2}d(\frac{x}{2})}{sec^2\frac{x}{2}+1}\\ &=\int \frac{d(tan\frac{x}{2})}{tan^2\frac{x}{2}+2}\\ &=\frac{1}{2}\int \frac{d(tan\frac{x}{2})}{(\frac{1}{\sqrt{2}}tan\frac{x}{2})^2+1}\\ &=\frac{1}{\sqrt{2}} \int \frac{d(\frac{1}{\sqrt{2}}tan\frac{x}{2})}{(\frac{1}{\sqrt{2}}tan\frac{x}{2})^2+1}\\ &=\frac{\sqrt{2}}{2}arctan(\frac{\sqrt{2}}{2}tan\frac{x}{2})+C \end{aligned} 15.3+cosxdx=2+2cos22xdx=1+cos22xd(2x)=sec22x+1sec22xd(2x)=tan22x+2d(tan2x)=21(2 1tan2x)2+1d(tan2x)=2 1(2 1tan2x)2+1d(2 1tan2x)=22 arctan(22 tan2x)+C


16. ∫ d x 2 + s i n x = ∫ d x 2 + 2 s i n x 2 c o s x 2 = ∫ s e c 2 x 2 d ( x 2 ) s e c 2 x 2 + t a n x 2 = ∫ d ( t a n x 2 ) t a n 2 x 2 + 1 + t a n x 2 = ∫ d ( t a n x 2 ) ( t a n x 2 + 1 2 ) 2 + 3 4 = ∫ d ( t a n x 2 ) 3 4 [ ( 2 3 t a n x 2 + 1 3 ) 2 + 1 ] = 2 3 3 ∫ d ( 2 3 t a n x 2 + 1 3 ) ( 2 3 t a n x 2 + 1 3 ) 2 + 1 = 2 3 3 a r c t a n ( 2 3 t a n x 2 + 1 3 ) + C \begin{aligned} 16. \int \frac{dx}{2+sinx}&=\int \frac{dx}{2+2sin\frac{x}{2}cos{x}{2}}\\ &=\int \frac{sec^2\frac{x}{2}d(\frac{x}{2})}{sec^2\frac{x}{2}+tan\frac{x}{2}}\\ &=\int \frac{d(tan\frac{x}{2})}{tan^2\frac{x}{2}+1+tan\frac{x}{2}}\\ &=\int \frac{d(tan\frac{x}{2})}{(tan\frac{x}{2}+\frac{1}{2})^2+\frac{3}{4}}\\ &=\int \frac{d(tan\frac{x}{2})}{\frac{3}{4}[(\frac{2}{\sqrt{3}}tan\frac{x}{2}+\frac{1}{\sqrt{3}})^2+1]}\\ &=\frac{2\sqrt{3}}{3}\int \frac{d(\frac{2}{\sqrt{3}}tan\frac{x}{2}+\frac{1}{\sqrt{3}})}{(\frac{2}{\sqrt{3}}tan\frac{x}{2}+\frac{1}{\sqrt{3}})^2+1}\\ &=\frac{2\sqrt{3}}{3}arctan(\frac{2}{\sqrt{3}}tan\frac{x}{2}+\frac{1}{\sqrt{3}})+C \end{aligned} 16.2+sinxdx=2+2sin2xcosx2dx=sec22x+tan2xsec22xd(2x)=tan22x+1+tan2xd(tan2x)=(tan2x+21)2+43d(tan2x)=43[(3 2tan2x+3 1)2+1]d(tan2x)=323 (3 2tan2x+3 1)2+1d(3 2tan2x+3 1)=323 arctan(3 2tan2x+3 1)+C


17. ∫ d x 1 + s i n x + c o s x = ∫ d x 1 + 2 s i n x 2 c o s x 2 + 2 c o s 2 x 2 − 1 = ∫ d ( x 2 ) s i n x 2 c o s x 2 + c o s 2 x 2 = ∫ s e c 2 x 2 d ( x 2 ) t a n x 2 + 1 = ∫ d ( t a n x 2 + 1 ) t a n x 2 + 1 = l n ∣ t a n x 2 + 1 ∣ + C \begin{aligned} 17. \int \frac{dx}{1+sinx+cosx}&=\int \frac{dx}{1+2sin\frac{x}{2}cos\frac{x}{2}+2cos^2\frac{x}{2}-1}\\ &=\int \frac{d(\frac{x}{2})}{sin\frac{x}{2}cos\frac{x}{2}+cos^2\frac{x}{2}}\\ &=\int \frac{sec^2\frac{x}{2}d(\frac{x}{2})}{tan\frac{x}{2}+1}\\ &=\int \frac{d(tan\frac{x}{2}+1)}{tan\frac{x}{2}+1}\\ &=ln\begin{vmatrix}tan\frac{x}{2}+1\end{vmatrix}+C \end{aligned} 17.1+sinx+cosxdx=1+2sin2xcos2x+2cos22x1dx=sin2xcos2x+cos22xd(2x)=tan2x+1sec22xd(2x)=tan2x+1d(tan2x+1)=ln tan2x+1 +C


18. ∫ d x 2 s i n x − c o s x + 5 \begin{aligned} 18. \int \frac{dx}{2sinx-cosx+5}&\end{aligned} 18.2sinxcosx+5dx

t = t a n x 2 t=tan\frac{x}{2} t=tan2x,则 d x = 2 d t 1 + t 2 dx=\frac{2dt}{1+t^2} dx=1+t22dt s i n x = 2 t 1 + t 2 sinx=\frac{2t}{1+t^2} sinx=1+t22t c o s x = 1 − t 2 1 + t 2 cosx=\frac{1-t^2}{1+t^2} cosx=1+t21t2

∴ ∫ d x 2 s i n x − c o s x + 5 = ∫ 1 4 t 1 + t 2 − 1 − t 2 1 + t 2 + 5 ⋅ 2 d t 1 + t 2 = 1 3 ∫ 1 ( 1 + 1 3 ) 2 + ( 5 3 ) 2 d ( t + 1 3 ) = 1 5 a r c t a n 3 t + 1 5 + C = 1 5 a r c t a n 3 t a n x 2 + 1 5 + C \begin{aligned} \therefore \int \frac{dx}{2sinx-cosx+5}&=\int \frac{1}{\frac{4t}{1+t^2}-\frac{1-t^2}{1+t^2}+5}\cdot \frac{2dt}{1+t^2}\\ &=\frac{1}{3}\int \frac{1}{(1+\frac{1}{3})^2+(\frac{\sqrt{5}}{3})^2}d(t+\frac{1}{3})\\ &=\frac{1}{\sqrt{5}}arctan\frac{3t+1}{\sqrt{5}}+C\\ &=\frac{1}{\sqrt{5}}arctan\frac{3tan\frac{x}{2}+1}{\sqrt{5}}+C \end{aligned} 2sinxcosx+5dx=1+t24t1+t21t2+511+t22dt=31(1+31)2+(35 )21d(t+31)=5 1arctan5 3t+1+C=5 1arctan5 3tan2x+1+C


19. ∫ d x 1 + x + 1 3 \begin{aligned} 19. \int \frac{dx}{1+\sqrt[3]{x+1}} \end{aligned} 19.1+3x+1 dx

t = x + 1 3 t=\sqrt[3]{x+1} t=3x+1 ,则 x = t 3 − 1 x=t^3-1 x=t31

∴ ∫ d x 1 + x + 1 3 = ∫ 3 t 2 d t 1 + t = 3 ∫ t 2 − 1 + 1 1 + t d t = 3 ∫ ( t − 1 ) d t + 3 ∫ 1 t + 1 d t = 3 2 t 2 − 3 t + 3 l n ∣ t + 1 ∣ + C = 3 2 ( x + 1 ) 2 3 − 3 x + 1 3 + 3 l n ∣ x + 1 3 + 1 ∣ + C \begin{aligned} \therefore \int \frac{dx}{1+\sqrt[3]{x+1}}&=\int \frac{3t^2dt}{1+t}\\ &=3\int \frac{t^2-1+1}{1+t}dt\\ &=3\int (t-1)dt+3\int \frac{1}{t+1}dt\\ &=\frac{3}{2}t^2-3t+3ln|t+1|+C\\ &=\frac{3}{2}(x+1)^{\frac{2}{3}}-3\sqrt[3]{x+1}+3ln|\sqrt[3]{x+1}+1|+C \end{aligned} 1+3x+1 dx=1+t3t2dt=31+tt21+1dt=3(t1)dt+3t+11dt=23t23t+3lnt+1∣+C=23(x+1)3233x+1 +3ln3x+1 +1∣+C


20. ∫ ( x ) 3 − 1 x + 1 d x \begin{aligned} 20. \int \frac{(\sqrt{x})^3-1}{\sqrt{x}+1}dx\end{aligned} 20.x +1(x )31dx

t = x t=\sqrt{x} t=x ,则

∫ ( x ) 3 − 1 x + 1 d x = ∫ t 3 − 1 t + 1 d ( t 2 ) = 2 ∫ t ( t 3 + 1 − 2 ) t + 1 d t = 2 ∫ t ( t + 1 ) ( t 2 − t + 1 ) t + 1 d t − 4 ∫ t t + 1 d t = 2 ∫ ( t 3 − t 2 + t ) d t − 4 ∫ t + 1 − 1 t + 1 d t = t 4 2 − 2 t 3 3 + t 2 − 4 t + 4 l n ∣ t + 1 ∣ + C = x 2 2 − 2 x 3 2 3 + x − 4 x + 4 l n ( x + 1 ) + C \begin{aligned} \int \frac{(\sqrt{x})^3-1}{\sqrt{x}+1}dx&=\int \frac{t^3-1}{t+1}d(t^2)\\ &=2\int \frac{t(t^3+1-2)}{t+1}dt\\ &=2\int \frac{t(t+1)(t^2-t+1)}{t+1}dt-4\int \frac{t}{t+1}dt\\ &=2\int (t^3-t^2+t)dt-4\int \frac{t+1-1}{t+1}dt\\ &=\frac{t^4}{2}-\frac{2t^3}{3}+t^2-4t+4ln|t+1|+C\\ &=\frac{x^2}{2}-\frac{2x^{\frac{3}{2}}}{3}+x-4\sqrt{x}+4ln(\sqrt{x}+1)+C \end{aligned} x +1(x )31dx=t+1t31d(t2)=2t+1t(t3+12)dt=2t+1t(t+1)(t2t+1)dt4t+1tdt=2(t3t2+t)dt4t+1t+11dt=2t432t3+t24t+4lnt+1∣+C=2x232x23+x4x +4ln(x +1)+C


21. ∫ x + 1 − 1 x + 1 + 1 d x \begin{aligned} 21. \int \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}dx \end{aligned} 21.x+1 +1x+1 1dx

t = x + 1 t=\sqrt{x+1} t=x+1 ,则 x = t 2 − 1 x=t^2-1 x=t21

∫ x + 1 − 1 x + 1 + 1 d x = ∫ t − 1 t + 1 d ( t 2 − 1 ) = ∫ 2 t ( t − 1 ) t + 1 d t = ∫ 2 t ( t + 1 − 2 ) t + 1 d t = ∫ 2 t d t − 4 ∫ t + 1 − 1 t + 1 d t = t 2 − 4 t + 4 l n ∣ t + 1 ∣ + C = x + 1 − 4 x + 1 + 4 l n ∣ x + 1 + 1 ∣ + C \begin{aligned} \int \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}dx&=\int \frac{t-1}{t+1}d(t^2-1)\\ &=\int \frac{2t(t-1)}{t+1}dt\\ &=\int \frac{2t(t+1-2)}{t+1}dt\\ &=\int 2tdt-4\int \frac{t+1-1}{t+1}dt\\ &=t^2-4t+4ln|t+1|+C\\ &=x+1-4\sqrt{x+1}+4ln|\sqrt{x+1}+1|+C \end{aligned} x+1 +1x+1 1dx=t+1t1d(t21)=t+12t(t1)dt=t+12t(t+12)dt=2tdt4t+1t+11dt=t24t+4lnt+1∣+C=x+14x+1 +4lnx+1 +1∣+C


22. ∫ d x x + x 4 d x \begin{aligned} 22. \int \frac{dx}{\sqrt{x}+\sqrt[4]{x}}dx\end{aligned} 22.x +4x dxdx

t = x 4 t=\sqrt[4]{x} t=4x ,则 x = t 4 x=t^4 x=t4

∫ d x x + x 4 = ∫ 4 t 3 d t t 2 + t = 4 ∫ t 2 d t t + 1 = 4 ∫ t 2 − 1 + 1 t + 1 d t = 4 ∫ ( t − 1 ) d t + 4 ∫ d t t + 1 = 2 t 2 − 4 t + 4 l n ( t + 1 ) + C = 2 x − 4 x 4 + 4 l n ( x 4 + 1 ) + C \begin{aligned} \int \frac{dx}{\sqrt{x}+\sqrt[4]{x}}&=\int \frac{4t^3dt}{t^2+t}\\ &=4\int \frac{t^2dt}{t+1}\\ &=4\int \frac{t^2-1+1}{t+1}dt\\ &=4\int (t-1)dt+4\int \frac{dt}{t+1}\\ &=2t^2-4t+4ln(t+1)+C\\ &=2\sqrt{x}-4\sqrt[4]{x}+4ln(\sqrt[4]{x}+1)+C \end{aligned} x +4x dx=t2+t4t3dt=4t+1t2dt=4t+1t21+1dt=4(t1)dt+4t+1dt=2t24t+4ln(t+1)+C=2x 44x +4ln(4x +1)+C


学习资料:《高等数学(第六版)》 ,同济大学数学系 编

感谢您的关注,更欢迎您的批评和指正!


http://www.niftyadmin.cn/n/5868396.html

相关文章

transformer架构嵌入层位置编码之动态NTK-aware位置编码

前文,我们已经构建了一个小型的字符级语言模型,是在transformer架构基础上实现的最基本的模型,我们肯定是希望对该模型进行改进和完善的。所以我们的另外一篇文章也从数据预处理、模型架构、训练策略、评估方法、代码结构、错误处理、性能优化等多个方面提出具体的改进点,但…

简单介绍 SSL 证书类型: DV、OV、EV 的区别

SSL证书类型DV、OV、EV 区别&#xff1a; DV(域名验证型)SSL证书 OV(组织验证型)SSL证书 EV(扩展验证型)SSL证书

【云原生实战】DevOps基础与实战项目

&#x1f50e;这里是【云原生实战】&#xff0c;关注我学习云原生不迷路 &#x1f44d;如果对你有帮助&#xff0c;给博主一个免费的点赞以示鼓励 欢迎各位&#x1f50e;点赞&#x1f44d;评论收藏⭐️ &#x1f440;专栏介绍 【云原生实战】 目前主要更新微服务&#xff0c;…

【目标检测】目标检测中的数据增强终极指南:从原理到实战,用Python解锁模型性能提升密码(附YOLOv5实战代码)

&#x1f9d1; 博主简介&#xff1a;曾任某智慧城市类企业算法总监&#xff0c;目前在美国市场的物流公司从事高级算法工程师一职&#xff0c;深耕人工智能领域&#xff0c;精通python数据挖掘、可视化、机器学习等&#xff0c;发表过AI相关的专利并多次在AI类比赛中获奖。CSDN…

嵌入式开发:傅里叶变换(5):STM32和Matlab联调验证FFT

目录 1. MATLAB获取 STM32 的原始数据 2. 将数据上传到电脑 3. MATLAB 接收数据并验证 STM32进行傅里叶代码 结果分析 STM32 和 MATLAB 联调是嵌入式开发中常见的工作流程&#xff0c;通常目的是将 STM32 采集的数据或控制信号传输到 MATLAB 中进行实时处理、分析和可视化…

[250224] Yaak 2.0:Git集成、WebSocket支持、OAuth认证等 | Zstandard v1.5.7 发布

目录 Yaak 2.0 发布&#xff1a;Git 集成、WebSocket 支持、OAuth 认证等众多功能&#xff01;Zstandard v1.5.7 发布&#xff1a;性能提升&#xff0c;稳定性增强 Yaak 2.0 发布&#xff1a;Git 集成、WebSocket 支持、OAuth 认证等众多功能&#xff01; Yaak&#xff0c;一款…

vue自定义指令千分位

问题 开发的时候经常会遇到需要在输入框中输入数字转为千分位&#xff0c;点击填写时又转为数字的情况 解决 因此直接在vue中注入自定义指令&#xff0c;通过使用自定义指令达到效果&#xff1b;限制input输入框只能输入数字和一位小鼠带你 自定义指令-千分位 // 自定义指令-千…

双足肌肉骨骼机器人 VS 传统钢铁结构机器人:科技新趋势与跨界创新

引言 近年来&#xff0c;机器人技术突飞猛进&#xff0c;人工智能、自动化、机器人硬件的发展不断刷新我们的认知&#xff0c;尤其是在机器人外骨骼和双足机器人领域。随着波兰某科技公司研发出一款具有肌肉骨骼结构的双足机器人&#xff0c;传统钢铁结构的机器人&#xff0c;尤…